LAB MONTHLY SUMMARY

Lab Name SRI ANNAI CLINICAL LAB

Lab No

4869

Month

October

Chemistry II

Year

2020

Constituent

Date of Result Entered: 13/10/2020

Date of Report Published: 09/11/2020

SI.N	o Analyte	Method / Principle Name	Analyzer	No of Participants	DV	Parti	cipant	s You	F 8F	SI II
1	GLUCOSEI	GOD-POD	Transasia							
2	UREAI	UREASE UV / GLDH	/ Erba Transasia	552	169.9	4 10.68	3 18.14	mg/d		
3	CREATININE	JAFFE RATE-BLANKED	/ Erba		112.3	13.65	15.32	mg/d	17 7	9 1.30
		&COMPENSATED/Alkaline	Transasia / Erba	507	4.67	11.38	0.53	6.3 mg/d	3.07	0.05
4	I'DILIKORIN I	DIAZONIUM SALT (Colorimetric) /JENDRASSIK	Transasia / Erba	503	3.61	12.89		20		0.04
5		BIURET - colorimetric	Transasia / Erba	459	5.18	8.64		mg/al		
6	ALBUMIN I	BCG - colorimetric	Transasia	459	3.05			3.4		0.04
7	URIC ACID I	ENZYMATIC / URICASE	/ Erba Transasia		3.05	8.97	0.27	g/dl	1.28	0.03
8	CHOLESTEROI	Colorimetric	/ Erba	467	4.33	17.71	0.77	6 ma/dl	2.17	0.07
		CHOD-PAP	Transasia / Erba	555	96.92	13.51	13.09	105.3	64	1.11
9	MOLICERIDE	GPO-PAP / Enzymatic	Transasia / Erba		68.92					
	SDI Range		Interpre				1.55	ng/dl	7.62	1.87

SDI Range	7 LIDA 12.70 21.55							
THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED I	Interpretation							
Within -1.0 to +1.0	Excellent.							
Between ± 1.0 to ± 2.0								
Between ± 2.0 to ± 3.0								
Beyond ±3.0	Unacceptable performance. Action Signal.							
	Formalice. Action Signal.							

Page 1 of 1

Homogeneity and Stability of the sample is passed.

Data in CMC EQAS reports is confidential

Contact details:

Email:clinqc@cmcvellore.ac.in Contact Number: 0416-2283102

Panela Christudoss

Dr. Pamela Christudoss
CMC EQAS Co-Ordinator

Soi Annai Ainical Lab Ray & E.G.B.

224848

CORRECTIVE ACTION OF OCTOBER 2020 EQAS RESULT

Date 11.11.2020

Creatinine and Uric acid values are high in October 2020

CORRECTIVE ACTION:

New Kit Changed and Proper washing on Machine and clean the flow cell.

Proper standard run on Creatinine and Uric acid

Internal QC Done. Internal QC Values on Creatinine and Uric acid with in QC Ranges.

Problems Solved.

SRI ANNAI CLINICAL LAB & X-RAY

11, PATTABI RAMAR KOVIL STREET

ARUPPUKOTTAI - 626 101