

SOHA BIOMEDICAL ENGINEERS

Date: 06-08-2021 Effective Date: 06-08-2021

Certificate of Calibration

Customer Name: "MAEER'S VishwaRaj Hospital Laboratory, Loni Kalbhor, Pune"

Model: Automated Hematology Analyzer Sysmex XS-800i

Serial No.: 67641

Calibration Done Date:

<u>06-08-2021</u>

Next Calibration Due Date On or Before:

06-08-2022

Lab In-charge: .

Dr. Aniruddha Garud

This is to certify that the above-mentioned product has been verified of calibration for CBC 6 parameters (WBC, RBC, HGB, HCT, MCV and PLT).

Calibration at site performed by Er Name: Er. Khurshid M. Kazi Designation: Technical Director Soha Biomedical Engineers, Pune

Signature

Encl:

- 1. Assay Sheet of Calibrator.
- 2. Printouts

SOHA BIOMEDICAL ENGINEERS

Date:

06-08-2021

Effective Date:

06-08-2021

Certificate of Inspection

1. Model: Automated Hematology Analyzer Sysmex XS-800i

2. Serial No.: 67641

3. Calibration Date: 06-08-2021

4. Material used: SCS-1000 (Lot No. 11940525, Expiry date: 15-Aug-2021)

Calibration for CBC 6 parameters using the measurement standard material (SCS-1000) was completed. The calibration result of 5 runs is summarized in the following table. Please refer to the attached sheets for the details.

Soha Biomedical Engineers, Pune

5. BACKGROUND CHECK

PARAMETER	RESULT	Range
WBC	0.0	0.3×10 ³ /uL or less
RBC	0.00	0.02×10 ⁶ /uL or less
HGB	0.0	0.1 g/dL or less
PLT	4	10×10 ³ /uL or less

6. PRECISION STUDY PERFORMED ON THE ANALYZER USING A BLOOD SAMPLE (ORIGINALS ATTACHED)

Result	PASS	PASS	PASS	PASS	PASS	PASS
Acceptable CV%	Within 3.0%	Within 1.5%	Within 1.5%	Within 1.5%	Within 1.5%	Within 4.0%
		3000				
CV%	1.671	0.815	0.771	0.636	0.341	1.678
SD	0.094	0.043	0.099	0.254	0.260	4.859
Mean	5.65	5.24	12.89	39.93	76.19	289.50
P10	5.67	5.29	13.00	40.1	75.8	296
P09	5.65	5.30	13.00	40.2	75.8	290
P08	5.62	5.22	12.80	39.7	76.1	291
P07	5.58	5.26	12.80	40.0	76.0	295
P06	5.72	5.24	12.80	40.0	76.3	281
P05	5.56	5.19	12.80	39.6	76.3	287
P04	5.87	5.22	12.90	39.8	76.2	285
P03	5.66	5.19	12.80	39.7	76.5	293
P02	5.6	5.29	13.00	40.40	76.4	285
P01	5.55	5.20	13.00	39.8	76.5	292
SMP NO	WBC	RBC	HGB	НСТ	MCV	PLT

7. CALIBRATION DATA

Result	PASS	PASS	PASS	PASS	PASS	PASS
Acceptable Limits	7.046 - 7.626	4.499 - 4.639	12.29 - 12.48	35.79 - 37.40	79.08 - 81.11	240.0 - 257.6
MEAN	7.25	4.534	12.44	36.46	80.40	242.8
C04	7.19	4.58	12.5	36.7	80.1	246
C03	7.14	4.54	12.5	36.3	80.0	240
C02	7,53	4.51	12.4	36.1	80.0	235
C01	7.15	4.53	12.4	36.2	79.9	245
C00	7.22	4.51	12.4	37.0	82.0	248
SMP NO/TIME	WBC	RBC	HGB	НСТ	MCV	PLT

9

SCS-1000

sysmex

For Asian Pacific

11940525 15-Aug-2021

LOT

Sysmex Calibrator System Assay Sheet

	×	XE-Series	×	XT-Series	SX.	XS-Series* V
	Assay	Acceptable	Assay	Acceptable	Assay	Acceptable
Parameter	Target	Limits	Target	Limits	Target	Limits
WBC K/uL	7.752	7.446 - 8.059	7.979	7.664 - 8.294	7.336	7.046 - 7.626
RBC M/uL	4.587	4.516 - 4.657	4.482	4.413 - 4.551	4.569	4.499 - 4.639
HGB g/dL	12.49	12.40 - 12.59	12.30	12.21 - 12.40	12.39	12.29 - 12.48
HCT %	35.94	35.14 - 36.73	34.47	33.71 - 35.23	36.60	35.79 - 37.40
MCV fL	78.35	77.35 - 79.34	06.92	75.92 - 77.88	80.09	79.08 - 81.11
PLT K/uL	248.9	240.1 - 257.7	247.7	239.0 - 256.5	248.8	240.0 - 257.6

	K-4500 /	/ K-1000 / K-800	od	pocH-100i**		KX-21	×	XP-Series	
	Assay	Acceptable	Assay	Acceptable	Assay	Acceptable	Assay	Accel	Acceptable
Parameter	Target	Limits	Target	Limits	Target	Limits	Target	Ľ	Limits
WBC K/uL	7.76	7.42 - 8.09	7.46	7.14 - 7.78	7.72	7.39 - 8.05	7.12	6.82	- 7.43
RBC M/ul	4.530	4.440 - 4.621	4.565	4.474 - 4.657	4.524	4.524 4.433 - 4.614	4.485	4.395	- 4.575
HGB g/dL	12.39	12.26 - 12.51	12.10	11.98 - 12.22	12.50	12.50 12.38 - 12.63	12.07 11.95		- 12.19
HCT %	33.34	32.60 - 34.07		34.85 - 36.43	33.87	33.12 - 34.62	33.69	32.94	- 34.43
MCV fL	73.59	72.78 - 74.40	78.07	77.21 - 78.92	74.87	74.05 - 75.69	75.10 74.28	74.28	- 75.93
PLT K/ul	L 256.0	243.2 - 268.8	244.9	232.6 - 257.1	275.9	262.1 - 289.7	268.5	255.0	- 281.9

SCS-1000 ASSAY TERM DEFINED

Assay Target - This is the assigned value for calibration.

Acceptable Limits - These limits represent the interval around the Assay Target that can be attributed to the expanded uncertainty of the total traceability chain.

A calibrator mean (n=5) that falls within these limits indicates an accurately calibrated instrument.

* XS-1000i/XS-800i - Assay target for WBC only for operation in CBC+Diff mode

**pocH-100i - Assay Target for WBC only for systems operating under software version 00-18 and following

Revised 02.2015

SYSMEX XS-800I AUTOMATED HEAMATOLOGY ANALYZER

INSTALLATION QUALIFICATION

For

"MAEER's Vishwaraj Hospital Laboratory"

Marketed by:
Transasia Bio-Medicals Ltd.,
Transasia House,
Chandivali Studio road,
Andheri (E),
MUMBAI – 400 072

Table of Contents

Sr. No.		UNMATCHED SERVICE
SI. NO.	Contents	Page No.
1	Approval of the IQ procedure	3
П	Instructions	4
III	Scope	5
IV	Ancillary Information	6
V	Installation Qualification	8
VI	Installation Procedure	11
VII	Comments	13
VIII	System Certification	14

Signature:

Date: 6 | 8 | 2 |

Signature:

I. Approval of the IQ procedure:

MAEER's Vishwaraj Hospital Laboratory and Transasia are jointly responsible for the installation of the system SYSMEX – HEMATOLOGY Analyzer, Model: XS-800I, Serial No. 67641 in the clinical lab of MAEER's Vishwaraj Hospital Laboratory as per the attached protocol.

Protocol Performed By: Transasia Representative

Name : Mr. Swapnil Kamarikar

Title : INSTALLATIONQUALIFICATION
Company : TRANSASIA BIO-MEDICALS LTD.

Validation Team from :

Name :

Designation : Department :

Customer Authorizations:

Name : Or-AvinDolla Game

Title : INSTALLATION QUALIFICATION

Site : Date:

II. Instructions

- 1. This document is to be completed at the time the system is shifted to its current location (new) and set up for operation.
- 2. An authorized TRANSASIA representative will check the system and enter the specific data as outlined in the appropriate Installation Qualification. Each result will be noted and dated.
- 3. Employee of MAEER's Vishwaraj Hospital Laboratory will verify each result and sign in the last page. The members of the validation team will carry this out.
- 4. ALL deviations from normal specification to include any problems with installation will be noted under COMMENTS. All resolution to such problems will also be noted in the COMMENTS section. Additional space is provided at the end of this protocol for the same.
- 5. This document contains proprietary information and is in no way to be copied, photographed or duplicated in any way without expressed written authorization by the Transasia Bio-Medicals Ltd., Transasia House, Mumbai.

Validation Team:

Name Swapnil Kameriker Designation Service Eng,

Signature

Date

III. Scope

This Installation Qualification protocol will be performed on the SYSMEX-Hematology Analyzer, Model XS-800I Serial No. 67641 located in MAEER's Vishwaraj Hospital Laboratory This Protocol will define the documentation that will be used to evaluate the instruments installation in accordance with the manufacture's specifications and intended use. Successful completion of this protocol will verify that the instrument identified has been installed in accordance with the intended usage.

Installation checks will also be performed to verify that the instrument has been installed with proper connections and utilities.

Trained, knowledgeable personnel will perform qualification studies.

Any exceptional conditions encountered during the qualification studies will be identified for review. Exceptional conditions will be investigated and the appropriate course of action determined. All documents will be initialed and dated.

Validation Team:

Name: Swapnil Komonikar Designation: Service Eng

Signature:

Date: 682

IV. Ancillary Information.

a. Certification of Purchase Order Compliance

urchas	e order.			
erified	By : Date :			
o. Utilit	ies			
Sr.No.	Utility		Verified By	Date
	Environmental condition as per requirement: (Ambient range of temperature 15 – 35 °C, air conditioning facility, non exposure to direct sunlight, non-interference from high frequency radio waves)	Yes / No		
2.	Adequate space for installation: (Minimum in mm. W 450 X D 660 X H 450)	Yes / No		
3.	Cellpack DCL, SULFOLYSER,,Lysercell WDF, Fluorocell WDF and Cell Clean	Yes / No		
1.	Power Source Requirements*	Yes / No		

I certify to the best of my knowledge, the instrument is purchased under Purchase order

Validation Team:

on Service Eng-

Designation

Signature

6/8/21 Date

c. The instrument has been verified for the following

Sr.No.	Verification		Verified By	Date
1.	Instrument is identified	Yes / No	V	Dute
2.	Manufacturer's specifications are included	Yes / No		
3.	Accessories / Consumables are listed	Yes / No		
4.	Manufacturer's certificate of Compliance attached	Yes / No		

Validation Team:

Name Swappi Komonkar

Designation Service Eng

Date 6/8/21

V. Installation Qualification

A. Equipment Description

This Sysmex XS-800I is a fully automated Hematology analyzer for in vitro diagnostic use in clinical laboratories. The XS-800I provides accurate and precise test results for () parameters.

Instrument identificat	ion	Verified by	Date
Equipment Name	Automated Hematology	· critica by	Dute
Model	XS800i		
Manufacturer	Sysmex Corporation		
Marketed By	Transasia	~	
Equipment #		~	
Serial Number	67641	~	
Size (in mm)	W 450 X D 660 X H 450		
Power	AC 220 V	~	
Frequency	50 – 60 Hz	V	
Power Consumption	Less Than 250 VA	-	

Validation Team:

Name Swepni) Komentor. Designation Service (ne

Date 6/8/21

B. Accessories / Consumables

Accessories				
			Land of	
	The state of the s			
		/		
	1 1			
	1			
	Part of the last o			
	/			
-				
1011 - 12 - 176				

Validation Team:

Name Surpuil Formaniter

Designation Service Grag.

Signature

Date 6/8/21

Consumables:

Consumables such as Cellpack SULFOLYSER, Stromatlyser 4DL, Stroamtolyser 4DS and Cell Clean were supplied along with instrument.

Currently a sufficient stock of the same is being maintained

Yes 🗆 No 🗆

C. List of Manuals, Certificates and Drawings

Transasia provides the following with the instrument.

1. Operator's Manual

D. Change Control Procedure

The instrument will not be altered, enhanced, modified or substituted for another system until a formal Change Control Authorization is approved from Transasia Bio-Medicals Ltd. and MAEER's Vishwaraj Hospital Laboratory.

E. Maintenance

The instrument listed within this document will be placed under the control of the purchasing institution with respect to proper maintenance procedures as detailed in the operations manual Chapter 13

A trained analyst using the manuals provided with the instrumentation can perform simple maintenance. Upon expiration of the warranty period Transasia offers several levels of Maintenance Agreements and Performance Testing services to assist you in maintaining GLP/GMP compliance. Contacting your local representative and requesting the additional Service Agreement can supply additional information.

Validation Team:

Name Suppuil Formanitar
Designation Service Ever

Signature \

Date 6/8/21

F. Spare Parts

Transasia strongly recommends the end user maintain a basic of consumable party envire to minimize down time due to minor failures. They have provided a list of such consumable parts and the same is also available in the Operator's Manual no.

C. Equipment Logs

Title	Location	Verified by	Date	

Sample page of the logbook is attached to this document

Effective date:

Validation Team:

Name sugn') Aemoniter.

Designation Service Eng.

Signature

Date 6/8/21

VI. Installation Procedure

(These had been performed at the time of original installation at the initial location)

- 1. Check Before Installation Refer to Chapter 7 of Sysmex XS800i Service Manual
- 3. Grounding Refer to Chapter 1 of Sysmex XS800i Service Manual
- 4. Installation Environment & Space Refer to Chapter 1 of Sysmex XS800i Service Manual
- 5. Connect Air & Reagent Tubes Refer to Chapter 7 of Sysmex XS800i Service Manual
- 6. Connect Connection Cord & Power Cord Refer to Chapter 7 of Sysmex XS800i Service Manual
- 7. Turn Power On Refer to Chapter 7 of Sysmex XS800i Service Manual

Validation Team:

Name Swepnil Konen Ker Designation Service by

Signature

Date

VII. COMMENTS:

Validation Team:

Name

Sugaril Komonita

Designation

Signature

Date 6/8/21

ON TO TO THE PROPERTY OF THE P

VIII. System Certification

Study data has determined that the system described in this document either meets all criteria outlined in this independently Installation Qualification Protocol, or exceptional conditions have been identified and documentation included. Exceptional conditions, if any, have been addressed. The system is ready for specified usage.

Report Performed By: Transasia Representative

Name : Mr. Swapnil Kamarikar

Title : INSTALLATION QUALIFICATION Signature:

Company: TRANSASIA BIO-MEDICALS LTD. Date : 6/8/21

Customer Authorizations:

Name: Dr-Aninodha haned

Title : INSTALLATION QUALIFICATION Signature:

Site : Date :

Name: Dr. AvinDolla Game

Title : INSTALLATION QUALIFICATION Signature:

Site : Date :

TRANSASIA®

Transasia Bio - Medicals Ltd., Akshay Complex, B Wing, Gala No. 214, Tadiwala Road, Pune - 411001
Tel: +91 20 2616 2658 Fax: +91 20 2616 2658 Email: wz3@transasia.co.in CIN: U33110MH1985PLC036198

Date: 6/8/2

Reagent Check done

Printer checked

Analyzer switched ON at

SELF CHECK performed

RINSE CYCLE completed

Background limits within acceptable range

Analysis start time

Analysis end time

No. of samples analyzed

Shut down procedure done

Analyzer switched OFF at

Recorded by: mr. Kinan Parcheckled by: Dr. Aring he Grand,

Date: 6/8/21

SYSMEX XS800i AUTOMATED HEMATOLOGY ANALYZER

OPERATIONAL QUALIFICATION

For

"MAEER's Vishwaraj Hospital Laboratory"

Marketed by:
Transasia Bio-Medicals Ltd.,
(ISO 13485 CERTIFIED)
Transasia House,
Chandivali Studio road,
Andheri (E),
MUMBAI – 400 072

1 | Page

www.transasia.co.in

HO: Transasia Bio - Medicals Ltd., Transasia House, 8 Chandivali Studio Road, Andheri (E), Mumbai - 400 072,

Table of Contents

Sr. No.	Contents	Page No.
I	Approval of the OQ procedure	3
II	Instructions	4
III	Scope	5
IV	Operational Qualification	6
V	System Certification	13

I. Approval of the OQ procedure:

MAEER's Vishwaraj Hospital Laboratory and Transasia are jointly responsible for operational check of the HEMATOLOGY Analyzer, Model: XS800i, serial# 67641 in the clinical lab of MAEER's Vishwaraj Hospital Laboratory as per protocol attached.

Protocol Performed by: Transasia Representative

Name : Mr. Swapnil Kamarikar

Title **OPERATIONAL QUALIFICATION** Company TRANSASIA BIO-MEDICALS LTD.

Validation Team from

Name

Designation Department

Site

Customer Authorization:

Dr. Animodha Gamed Name

Title

OPERATIONAL QUALIFICATION

Signature:

Signature:

Date: 6 | 8 | 2

II. Instructions

- 1. The TRANSASIA representative will check each module and enter the specific data as described in the Operational Qualification. Each result will be noted and dated.
- 2. Employee of MAEER's Vishwaraj Hospital Laboratory will verify each result and sign in the last page. The member/s of the validation team will be responsible for the same.
- 3. Any deviations from the acceptance criteria detailed in this document will be noted in the COMMENTS section of the OQ protocol. All resolution to such problems will also be noted in the COMMENTS section, and must be resolved prior to issuance of a SYSTEM CERTIFICATION. This will be an additional cost to the purchasing institution (CUSTOMER). However this additional cost will be waived when this test is conducted at time of initial performance check of new instruments.
- 4. Any test data, which does not meet the specified acceptance criteria, will be submitted to the appropriate laboratory personnel for solution. All steps taken subsequently will be documented.
- 5. This document contains proprietary information and is in no way to be copied. photographed or duplicated in any way without expressed written authorization by the Product Manager at Transasia Bio-Medicals Ltd., Transasia House, Mumbai.

Validation Team:

Name Swepnil Komen Ker Designation Service Eng.

Signature Com-

III. Scope

This Operational Qualification protocol will be performed on the Hematology Analyzer, Model XS-800I, Serial No.67641 located in MAEER's Vishwaraj Hospital Laboratory. This Protocol will define the documentation that will be used to evaluate the instruments installation in accordance with the manufacturer's specifications and intended use. Successful completion of this protocol will verify that the instrument identified is performing in accordance with the intended usage.

Trained, knowledgeable personnel will perform qualification studies.

Any exceptional conditions encountered during the qualification studies will be identified for review. Exceptional conditions will be investigated and the appropriate course of action determined. All documents will be initialed and dated.

Validation Team:

Name Swep nil Komen Ker Designation Service frg.

Signature

6/8/2/ Date

IV. Operational Qualification

a. Instrument Identifi	Verified Date	
Model Name Serial Number	XS800i 67641	

b. Following is a list of tests to be performed and verified:

Test No.	Test Name	Test Purpose Verified Date	e
1.	Whole Blood (WB) X-aspiration motor operation	To the WB aspiration motor operation	
2	Sheath Motor Test.	To check Operation of Sheath Motor	
3.	Diagnostic Test for Auto Sampler and Bar code reader	To Check operation of Auto sampler and Barcode reader.	

Validation Team:

Name Swep nil Komenter Designation Service Eng.

Signature

Date 6 8 21

c. Operational Testing

Test 1

Test Name Whole Blood Aspiration Motor Test

To test the Aspiration Motor movement Purpose

Please follow the steps described in chapter 2, page 2.9.1 Method

of Sysmex XN - 350 manual

FAIL **PASS PARAMETER**

Parameter values for verification: Whold Blood

Aspiration Motor

Test

Validation Team:

Name Swap ni) Kamerikor.
Designation Service Eng

Signature Y

Date 6/8/2/

Test 2

Test Name : Sheath Motor Test

Purpose : To test the Sheath Motor Operation Test.

Method : Please follow the steps described in chapter 2, page 2.9.1

of Sysmex XS800i's manual No.

PARAMETER PASS FAIL

Parameter values for verification : Sheath Motor

Motor Test

Validation Team:

Name Swapnil Komanikar

Designation Service tra,

Signature V

Date 6 8 21

A PRISTO NA PRIS

Test 3

Test Name Diagnostics Test for Auto Sampler & Barcode Operation

Purpose To test the Operation of Auto Sampler & Barcode.

Method Please follow the steps described in chapter 2, page 2.9.1&4

of Sysmex XS800i manual No.

PASS FAIL **PARAMETER**

Parameter values for verification: Sampler & Barcode

Test

Validation Team:

Name Swepnil Kameniker Designation Service Grag-

Signature

Date 6/8/2

d. Operational Procedure

a. Certificate of Training

1. Technician Training

This certifies that the technicians listed below have received basic user training in the following categories for the system described in this Installation Qualification.

Mr. Vijay Shahu who is certified by Transasia Bio-Medicals Ltd has conducted the training.

Sr.No.	Training Program	Initials	Date
1.	Instrument Setup		
2.	System Operation		
3.	Basic Troubleshooting & Maintenance		

2. Operator Training

The users responsible for the operation of this instrument will be trained in the proper usage of the system. Training will focus on the basic operation and maintenance of the system. The training of the operators will be documented and the training records will be filed as indicated below:

Sr.No.	Operators	Location	Initials	Date
1	Kingn Pandit	VRH	Krust	
2	sachin Bonker	VRH	Ofwa.	
3	Knishna Kendre	VRH	Godes	

Validation Team:

Name Swepuil Komoniker
Designation Service from

Signature

Date 6 8 21

b. Customer SOP

Title	Number	Revision #	Effective Date	Location	Verified By	Date
Operating Procedure		NA				

Validation Team:

Name Swep will Komen Kor Designation Selvice English Signature King

6/8/21 Date

COMMENTS:

Validation Team:

Name swep nil Komenker

Designation service fra, JASAS

Signature

Date

6/8/2/

V. System Certification

Study data has determined that the system described in this document either meets all criteria outlined in this Operational Qualification Protocol, or exceptional conditions have been identified and documentation included. Exceptional conditions, if any, have been addressed. The system is ready for specified usage.

Report Performed By: Transasia Representative

Name : Mr. Swapnil Kamarikar

Title : OPERATIONAL QUALIFICATION Signature:

Company: TRANSASIA BIO-MEDICALS LTD. Date

6/8/2(200

Customer Authorizations:

Name: Dr-Auinodha Ranel

Title : OPERATIONAL QUALIFICATION Signature:

Site : Date :

Name: Or-Auinodha Ganed

Title : OPERATIONAL QUALIFICATION Signature:

Site : Date ·

SYSMEX XS800i AUTOMATED HEMATOLOGY ANALYZER

PERFORMANCE QUALIFICATION

For

"MAEER's Vishwaraj Hospital Laboratory"

Marketed by:
Transasia Bio-Medicals Ltd.,
(ISO 9002 CERTIFIED)
Transasia House,
Chandivali Studio road,
Andheri (E),
MUMBAI – 400 072

Table of Contents:

Sr. No.	Contents	Page No.
I	Approval of the PQ procedure	3
II	Instructions	4
III	Scope	5
IV	Performance Qualification	6
V	System Certification	10

Signature:

I. Approval of the PQ procedure

MAEER's Vishwaraj Hospital Laboratory and Transasia are jointly responsible for conducting the Performance Check of the Hematology Analyzer, SYSMEX Model: XS800i, Serial No.67641 in the clinical lab of MAEER's Vishwaraj Hospital Laboratory as per the attached protocol.

Protocol Performed By: Transasia Representative

Name : Mr. Vijay Shahu

Title : PERFORMANCE QUALIFICATION Company : TRANSASIA BIO-MEDICALS LTD.

Validation Team from

Name :
Designation :
Department :

Name :
Designation :
Department :

Customer Authorizations:

Name: Or Aninodha hand

Title : PERFORMANCE QUALIFICATION

Site : Pune

Name: Dr Arincodha Gamel

Title : PERFORMANCE QUALIFICATION

Site : Pune

Date:

Date:

Signature:

Signature:

6/8/4

II. Instructions

- 1. An authorized TRANSASIA representative will check for the performance of the instrument and enter the specific data as outlined in the Performance Qualification. Each result will be noted and dated.
- 2. Performance checks on a regular basis described in the Further Performance Checks (vide-infra) will be responsibility of the customer's personnel.
- 3. Employee of MAEER's Vishwaraj Hospital Laboratory will verify each result and sign in the last page. The members of the validation team will carry this
- 4. ALL deviations from the acceptance criteria detailed in this document will be noted in the COMMENTS section at the end of each PQ protocol. All resolution to such problems will also be noted in the COMMENTS section, and must be resolved prior to issuance of a SYSTEM CERTIFICATION. These will be an additional cost to the purchasing institution (CUSTOMER). However this additional cost will be waived when this test is conducted at time of initial performance check of new instruments.
- 5. Any test data that does not meet the specified acceptance criteria will be submitted to the appropriate laboratory personnel for solution. All steps taken subsequently will be documented.
- 6. This document contains proprietary information and is in no way to be copied, photographed or duplicated in any way without expressed written authorization by the Production Manager at Transasia Bio-Medicals Ltd., Transasia House, Mumbai.

Validation Team:

Name Vijour Sahun

Designation Vir App Spl.

Signature

Date 6/8/21

III. Scope

This Performance Qualification protocol will be performed on the Hematology Analyzer, Model XS-800I, Serial No 67641 located in MAEER's Vishwaraj Hospital Laboratory. This Protocol will define the documentation that will be used to evaluate the instruments installation in accordance with the manufacture's specifications and intended use. Successful completion of this protocol will verify that the instrument identified is performing in accordance with the intended usage.

Trained, knowledgeable personnel will perform qualification studies.

Any exceptional conditions encountered during the qualification studies will be identified for review. Exceptional conditions will be investigated and the appropriate course of action determined. All documents will be initialed and dated.

Validation Team:

Name Vijoy Sahu

Designation App Spl.

Signature Vijoy

Date

IV. Performance Qualification

2. Serial Number

a. Instrument Identifi	Verified	
1. Model Name	SYSMEX XS800i	

b. Following is a list of tests to be performed and verified:

Test No.	Test Name	Test Purpose	Verified Date
02	Sample Processing	Ability to process samples	NA
03	Further Performance Checks	Regular Maintenance	

67641

Validation Team:

Name Vijory Salry
Designation App Spl

Signature

Date 6 | 8 | 2

c. Performance Testing

Test 1

Test Name:

Sample Processing

Purpose:

Ability to Process Samples

Method:

1. Run the control samples five times consecutively

Acceptance Criteria: Each of the results obtained above should be within the range as specified in the control chart.

Parameters Values for Verification:

RBC Count:

Test	Control Values	Results Obtained	Pass	Fail
1.	h'2	4.1		
2.	4.2	4,2		
3.	4+2	4.2	~	
4.	4-2	h:2		
5.	1, 2	4.2	L	

Validation Team:

Name Vijory salm Designation App Spl.

Signature

Date

WBC Count:

Test	Control Values	Results Obtained	Pass	Fail
1.	6.1	6.2	V	-
2.	. 6.1	5.9		
3.	6.1	6.0	1-	
4.	6.1	6:1		
5.	6.1	6.1		

Hemoglobin:

Test	Control Values	Results Obtained	Pass	Fail
1.	12.1	11-9		
2.	12.1	12.0	-	
3.	12.1	12:0	-	
4.	12.)	12.0	_	
5.	12:1	12.6		

Platelet Count:

Test	Control Values	Results Obtained	Pass	Fail
1.	350	340		1 -1
2.	350	345		
3.	350	343		
4.	350	333	~	
5.	350	352	1	

Validation Team:

Name vijay salvy Designation Appl- Spl.

Test 2

Test Name:

- 1. Tests for checking the performance of the instruments during analysis
- 2. Tests for checking long term performance of the instrument

Purpose:

The purpose of the above checks is to ensure the reliability of the results being obtained.

Method:

1. During Sample analysis:

To run control samples each time the instrument is used for sample analysis and verification of the results of the controls to be within the reference range to be established by performance of the precision experiments.

2. Long term Performance

This is to be checked by Levy Jennings plots to be updated once in six months

Validation Team:

Signature

Date

TRANSASIA®

Transasia Bio - Medicals Ltd., Akshay Complex, B Wing, Gala No. 214, Tadiwala Road, Pune - 411001

Tel: +91 20 2616 2658 Fax: +91 20 2616 2658 Email: wz3@transasia.co.in CIN: U33110MH1985PLC036198

V. System Certification

Study data has determined that the system described in this document either meets all criteria outlined in this Performance Qualification Protocol, or exceptional conditions have been identified and documentation included. Exceptional conditions, if any, have been addressed. The system is ready for specified usage.

Report Performed By: Transasia Representative

Name: Mr. Vijay Shahu

Title : PERFORMANCE QUALIFICATION Signature:

Company: TRANSASIA BIO-MEDICALS LTD. Date

18121 ROBATE

Customer Authorizations:

Name: Dr. Animedalla Gamel

Title : PERFORMANCE QUALIFICATION Signature:

Site : Date : 6/8/2/

Name: Dr. Avinodher Ganud

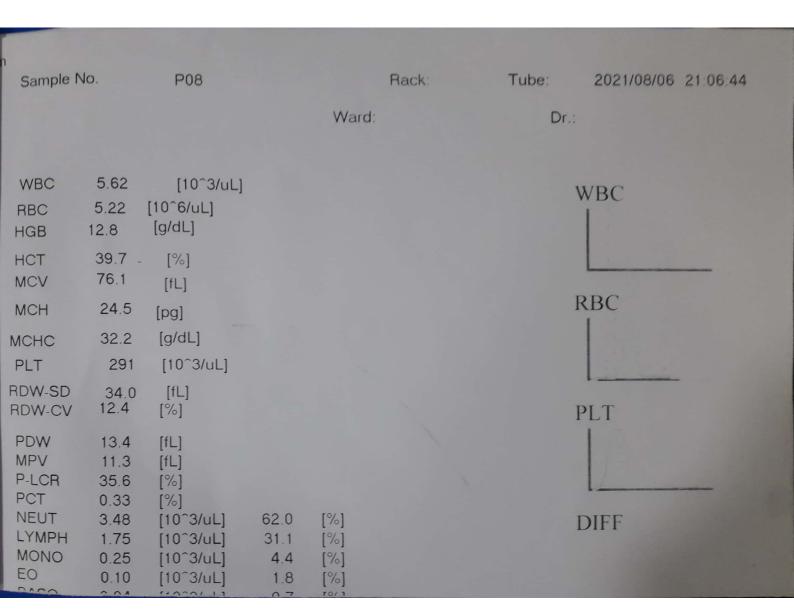
Title : PERFORMANCE QUALIFICATION Signature:

Site : Date : 6/8/21

Item							
Sampl	le No.	P00			Rack:	Tube:	2021/08/06 20:57:35
				Ward		Dr.:	
WBC RBC HGB	5.75 5.17 12.9	[10^3/uL [10^6/uL] [g/dL]]			\	WBC
HCT MCV MCH	39.7 76.8 25.0	[fL] [pg]				R	RBC
MCHC PLT RDW-SD RDW-CV	32.5 290 34.4 12.6	[g/dL] [10^3/uL] [fL] [%]				p	LT
PDW MPV P-LCR PCT NEUT LYMPH MONO EO BASO	12.5 11.2 34.9 0.33 3.60 1.84 0.21 0.06 0.04	[fL] [fL] [%] [%] [10^3/uL] [10^3/uL] [10^3/uL] [10^3/uL]	62.6 32.0 3.7 1.0	[%] [%] [%] [%]			IFF

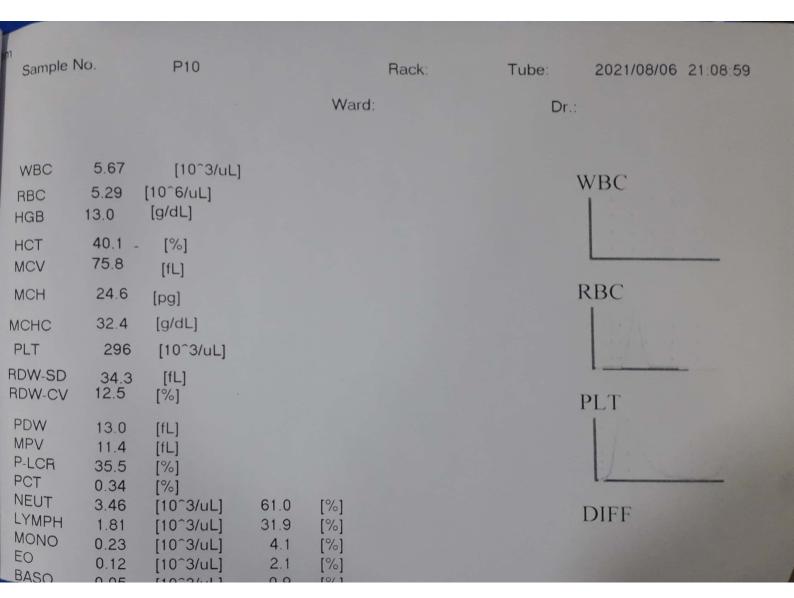
Sample No.	P01	Rack: Ward:	Tube: 2021/08/06 20:59:03 Dr.:
	[10^3/uL] 0^6/uL] g/dL]		WBC
	[%] [fL] [pg] [g/dL]		RBC
PLT 292 RDW-SD 34.2 RDW-CV 12.4 PDW 13.3	[10^3/uL] [fL] [%]		PLT
MPV 11.3 P-LCR 35.2 PCT 0.33 NEUT 3.44 LYMPH 1.81 MONO 0.21 EO 0.06 BASO 0.03	[fL] [fL] [%] [10^3/uL] 62.0 [10^3/uL] 32.6 [10^3/uL] 3.8 [10^3/uL] 1.7	[%] [%] [%]	DIFF

Sample No.	P02		Ward:	Rack:	Tube:	2021/08/06 21:00:10
WBC 5.60 RBC 5.29 HGB 13.0	[10^3/uL] [10^6/uL] [g/dL]					WBC
HCT 40.4 - 76.4 MCV 76.4 MCH 24.6 MCHC 32.2 PLT 285 RDW-SD 34.2	[%] [fL] [pg] [g/dL] [10^3/uL] [fL]					RBC
PDW 13.3 MPV 11.3 P-LCR 35.3 PCT 0.32 NEUT 3.46 LYMPH 1.79 MONO 0.22 EO 0.08 BASO 0.05	[%] [fL] [fL] [%] [%] [10^3/uL] [10^3/uL] [10^3/uL] [10^3/uL]	61.8 32.0 3.9 1.4	[%] [%] [%] [%]			PLT DIFF


Sample No.	P03	Rack: Ward:	Tube: 2021/08/06 21:01:10 Dr.:
	[10^3/uL] 0^6/uL] [g/dL]		WBC
HCT 39.7 - 76.5 MCV 76.5	[%] [fL] [pg]		RBC
MCHC 32.2 PLT 293 RDW-SD 34.1 RDW-CV 12.4	[g/dL] [10^3/uL] [fL] [%]		PLT
PDW 13.8 MPV 11.4 P-LCR 36.1 PCT 0.33 NEUT 3.54 LYMPH 1.81	[10 ³ /uL] 3	62.6 [%] 32.0 [%]	DIFF
MONO 0.21 EO 0.07 BASO 0.03	[10^3/uL] [10^3/uL] [10^3/uL]	3.7 [%] 1.2 [%] 0.5 [%]	

Sample No. P04	Rack: Ward:	Tube: 2021/08/06 21:02:18 Dr.:
WBC 5.87 [10^3/uL] RBC 5.22 [10^6/uL] HGB 12.9 [g/dL]		WBC
HCT 39.8 - [%] MCV 76.2 [fL] MCH 24.7 [pg]		RBC
MCHC 32.4 [g/dL] PLT 285 [10^3/uL] RDW-SD 33.8 [fL] RDW-CV 12.3 [%]		PLT
PDW 13.3 [fL] MPV 11.2 [fL] P-LCR 34.2 [%] PCT 0.32 [%] NEUT 3.60 [10^3/uL] LYMPH 1.92 [10^3/uL] MONO 0.22 [10^3/uL] EO 0.08 [10^3/uL] BASO 0.05 [10^3/uL]	32.7 [%] 3.7 [%] 1.4 [%]	DIFF

Sample N	lo.	P05			Rack:	Tube:	2021/08/06 21:03:26
				Ward:		Dr.	
WBC RBC HGB	5.56 5.19 12.8	[10^3/uL] [10^6/uL] [g/dL]					WBC
HCT MCV	39.6 <i>-</i> 76.3	[%] [fL]					
MCH	24.7	[pg]					RBC
MCHC PLT	32.3 287	[g/dL] [10^3/uL]					
RDW-SD RDW-CV	34.1 12.4	[fL] [%]					PLT
PDW MPV P-LCR PCT NEUT LYMPH MONO EO BASO	13.1 11.2 35.6 0.32 3.38 1.85 0.22 0.08 0.03	[fL] [fL] [%] [%] [10^3/uL] [10^3/uL] [10^3/uL] [10^3/uL]	60.8 33.3 4.0 1.4 0.5	[%] [%] [%] [%]			DIFF


_			
	Sample No. P06	Rack: Ward:	Tube: 2021/08/06 21:04:29 Dr.:
	WBC 5.72 [10 ³ / ₂ RBC 5.24 [10 ⁶ / ₄ L] HGB 12.8 [g/dL]	uĹ]	WBC
	HCT 40.0 - [%] MCV 76.3 [fL] MCH 24.4 [pg]		RBC
	MCHC 32.0 [g/dL] PLT 281 [10^3/u RDW-SD 34.4 [fL] RDW-CV 12.5 [%]	_]	PLT
	PDW 12.9 [fL] MPV 11.2 [fL] P-LCR 35.4 [%] PCT 0.31 [%] NEUT 3.55 [10^3/L LYMPH 1.82 [10^3/L MONO 0.22 [10^3/L	L] 31.8 [%]	DIFF
	EO 0.10 [10^3/c	L] 1.7 [%]	

Sample No.		P07		Ward:	Rack:	Tube: Dr.	2021/08/06 21:05:40
	5.58	[10^3/uL]					WBC
HGB 1	5.26 [2.8 40.0 -	[10^6/uL] [g/dL] [%]					
	76.0 24.3	[fL] [pg]					RBC
MCHC PLT	32.0 295	[g/dL] [10^3/uL]					
RDW-SD RDW-CV	34.2 12.4	[fL] [%]					PLT
PDW MPV P-LCR PCT	13.9 11.4 36.1 0.33	[fL] [fL] [%] [%]					
NEUT LYMPH MONO EO	3.44 1.78 0.24 0.08	[10 ³ /uL] [10 ³ /uL] [10 ³ /uL] [10 ³ /uL]	61.7 31.9 4.3 1.4	[%] [%] [%]			DIFF

n Sample No	0.	P09		Ward:	Rack:	Tube: Dr.	2021/08/06 21:07:57
WBC RBC HGB	5.65 5.30 13.0	[10^3/uL] [10^6/uL] [g/dL]					WBC
HCT MCV MCH	40.2 - 75.8 24.5	- [%] [fL] [pg]					RBC
MCHC PLT RDW-SD RDW-CV	32.3 290 34.0 12.5						PLT
PDW MPV P-LCR PCT NEUT LYMPH MONO EO	13.3 11.2 34.9 0.33 3.44 1.84 0.24 0.09	[fL] [fL] [%] [%] [10^3/uL] [10^3/uL] [10^3/uL]	60.9 32.6 4.2 1.6	[%] [%] [%]			DIFF

RASO

