Preparation of Levey -Jennings (LJ) Chart

(Example: Glucose Test)

Calculate the SD (Standard Deviation) by using the formula:

1. First look at the reference chart for the IQC sample given by CMC, Vellore in which the Range and Mean values are given for each analyte/ parameter.

2. From the given Mean and Range values, find out 1 Standard Deviation (1 SD) by using the

CMC Assaye	d IQC for pre	cision checking	PRECICON SE
Analyte	/ Mean /	Range	Unit
Glucose	105	100 - 110	mg/dL
Urea	35	30 - 40	mg/dL
Creatinine	1.5	1.2 - 1.8	me/dL

SD = (Maximum Value - Mean) / 2

3. For Example:

In Glucose analyte/parameter 1 SD value & 2 SD values are calculated as follows, Calculation of 1 SD:

- Maximum Value given in the Range of the Reference Chart = 110 mg/dL
- Mean Value given = 105 mg/dL
- Hence, 1 Standard Deviation for Glucose Test = (110-105) / 2
- 1 SD = 5/2 = 2.5
- By using the 1 SD Value of 2.5, calculate the 1 SD of the glucose analyte / parameter by adding the mean value of 105 mg/dL (105+ 2.5 = 107.5) which comes to 107.5 mg/dL

Calculation of 2 SD:

- Then proceed to Calculate 2 SD by multiplying 1 SD x 2.
- Hence, $2 SD = 2.5 \times 2 = 5$
- By using the 2 SD Value of 5, calculate the 2 SD of the glucose analyte / parameter by adding the mean value of 105 mg/dL (105 + 5 = 110) which comes to 110 mg/dL
- 4. Same formula to be applied for calculating -1SD and 2SD by subtracting the Mean value.
- 5. Mark and draw lines for the calculated SD Values

2SD =
$$105 + (2 \times 2.5) = 110 \text{ mg/dL}$$

1SD =
$$105 + 2.5 = 107.5 \text{ mg/ dL}$$

Mean =
$$105 \text{ mg/dL}$$

-1SD =
$$105 - 2.5 = 102.5 \text{ mg/dL}$$

$$-2SD = 105 - (2 \times 2.5) = 100 \text{ mg/dL}$$

SPHL Laboratory Manual